哲学史  >  分支学科  >  科学技术哲学  >  正文

【陈晓平】试验机制无差别原则及其条件——关于无差别悖论的一种解决

无差别原则(the Principle of Indifference)是确定基本概率的原则之一,它在概率论和统计学中占居重要的地位。不过,一个有趣的现象是,人们对于无差别原则的质疑正如人们对它的使用一直没有间断。无差别原则的致命缺陷在于它会导致逻辑悖论,即无差别悖论。

一、无差别原则

“无差别原则”这个名称得自于现代归纳逻辑的创始人之一凯恩斯(John M. Keynes,但是事实上这个原则几乎是伴随概率概念一道出现的。早在18世纪初概率论处于草创阶段,概率论的先驱者之一伯努利(Jakob Bernoulli)就把它命名为“不充分理由原则”(the Principle of Non-sufficient Reason)。大约一个世纪以后,古典概率论的集大成者拉普拉斯(Pierre S. Laplace)把它正式地作为概率论的理论基础。

古典概率概念是以“等概事件”(equally possible cases)为初始概念的,古典概率的定义是:P(A)=m/n,意为:事件A的概率等于A所包含的m个基本事件在全部n个基本事件中所占的比例,而基本事件的概率是相等的。那么,如何确定基本事件的等概性呢?拉普拉斯告诉我们:“概率是相对的,部分地相对于我们的无知,部分地相对于我们的知识。我们知道在三个或更多事件中有一个将要发生;但是没有什么能使我们更为相信其中某一个事件而非其他事件发生。在这种不确定的情形下,我们不可能确定地宣称它们的发生。”([1] p.6)这也就是说,我们的知识或无知使我们无法对所讨论事件的可能性持有倾向性意见,即认为哪一个比哪一个更可能发生,那么我们就应该赋予这些事件以相等的概率。基本事件的等概性成为我们计算其他事件概率的基础。请注意,拉普拉斯确定等概事件的依据包含了人们的无知;换言之,相等的知识或相等的无知都是确定等概事件的理由。显然,这种确定等概事件的原则是对伯努利的不充分理由原则的继承,具有认识论的甚至主观主义的色彩。

然而不幸的是,这样表述的无差别原则(不充分理由原则)很容易导致逻辑悖论。拉普拉斯注意到这一点并给出他自己的解答。他举出一个例子:A女士被告知一枚硬币是有偏向性的,但却未被告知偏向哪一面,并且被要求说出这枚硬币投掷后正面朝上的概率。一方面,A女士根据无差别原则判定这枚硬币正面朝上和反面朝上的概率均为1/2,既然她对这枚硬币倾向于哪一面的问题是完全无知的。另一方面,A女士有理由说:这枚硬币正面朝上的概率不为1/2,既然已知它是有偏向性的。这样,对于这枚硬币正面朝上的概率P就有两种相反的答案:P=1/2P¹1/2,这是一个逻辑悖论。对于这个逻辑悖论,拉普拉斯的解答就是坚持前者而放弃后者。(参见[1]p.56)这一解答无异于是对无差别原则的无条件地维护,难免是武断的和缺乏说服力的,并没有从根本上解决问题。事实上,由无差别原则导致的逻辑悖论层出不穷,以致后来的凯恩斯不得不认真地对待这一问题。

在维护无差别原则这一点上,凯恩斯同拉普拉斯是一致的,因为凯恩斯也认为量化的概率只有通过等概的候选者来得到。凯恩斯对无差别原则的最初表述是:“无差别原则宣称,如果没有已知的理由对我们题目中的一个候选者做出比其他候选者更强的断言,那么,相对于这样的知识,关于每一个候选者的断言有着相等的概率。”([2]p.42)这一表述同拉普拉斯和伯努利的意思是基本相同的,不过,面对由它所引起的各种逻辑悖论,凯恩斯给予更多的考虑和更为认真的对待。

二、无差别悖论

凯恩斯则对于由来已久的无差别悖论做了比较集中的表述。这里介绍其中有代表性的三个,即书悖论、酒-水漏悖论和随机弦悖论。[①]

首先讨论书悖论。某人要去某个陌生的图书馆取一本他从来没有看到过的书,他考虑这本书的封面是红色的概率是什么。他没有理由在这本书是红的和这本书是非红的之间做出倾向性的意见,根据无差别原则,他赋予概率P()= P(非红)=1/2。按照同样的推理方式,他对于这本书是蓝的、绿的或黄的均赋予概率P()=1/2P(绿)=1/2P()=1/2,这些概率之和大于1。然而,这本书是红的、蓝的、绿的或黄的这些断言之间是互斥的,根据概率演算规则,互斥事件的概率之和小于或等于1。这便同前面的概率赋值发生冲突。

其次讨论酒-水悖论。有一瓶酒和水的混合液,对它我们只知道其中两种液体的比值不超过3:1,至于哪个多哪个少以及其他信息一概不知。由此我们能够确定酒对于水的比例在区间[1/3,3]之内,即1/3≤/≤3,但是具体在哪一点上我们没有理由持有倾向性意见。根据无差别原则,酒对水的比例的概率是均匀分布在区间[1/3,3]之上的。相应地,酒对水的比例不超过2的概率是均匀地分布在区间[1/3,2]之上的。因此,后者的概率是:

P(1/3≤/≤2)=

同理,水对酒的比例也是在区间[1/3,3]之内,即1/3≤/≤3,并且其概率均匀地分布在该区间。相应地,水对酒的比例不小于1/2的概率均匀地分布在区间[1/2,3]。因此,后者的概率是:

P(1/2≤/≤3)=

我们知道,水对酒的比例在区间[1/3,3]内不小于1/2与酒对水的比例在该区间不大于2恰好是同一事件,但却被无差别原则赋予两个不同的概率值。

最后讨论随机弦悖论,它属于几何概率悖论。这个悖论略为复杂,是由伯特兰(J. Bertrand)1889年提出。对一个确定的圆随机地挑选它的一条弦,现问这条随机弦的长度大于该圆的内接等边三角形的边长的概率是什么?这一概率记为P(CLSE),对它的计算可以根据无差别原则以三种方式来进行。

从图1可以看到,延长YOXZ相交于WOWZ是一个直角三角形,并且XW=WZ。此外,OWR·sin300R/2。我们可以依据这些几何学事实来给出第一种计算。图2中的线段AB代表一条随机弦,OW从圆心出发垂直于AB并与圆相交于C。结合图1给出的几何学事实可知,AB的长度大于内接等边三角形的边长,当且仅当,OWR/2。然而,我们没有理由倾向于设定WOC的某一点而非其他点上。根据无差别原则,WOC上各点的概率分布是均匀的,相当于OW的长度在区间[0,R]上的概率分布是均匀的,显然,

P(CLSE)P(OWR/2)1/2

       B

 

 

 

A

      x

2P(CLSE)的第一种计算

1 一个等边三角形内接在圆心

O半径为R的圆内

 

关于P(CLSE)的第二种计算可以参考图3,其中AB是一条随机弦,AA¢A²是内接于该圆的等边三角形。在圆周上的A点画一条切线,θ是该切线与AB之间的角度。显然,AB的长度大于内接等边三角形的边长,当且仅当,60oθ120o。然而,我们没有理由倾向于设定θ0o180o之间的某一值而不是其他值,根据无差别原则,θ在区间[0o,180o]上是均匀分布的,因此,

3P(CLSE)的第二种计算

4P(CLSE)的第三种计算


           B

 

 

 

A

 

P(CLSE)P(60oθ120o)1/3

 

关于P(CLSE)的第三种计算是:在半径为R的主圆内画一个半径为R/2的同心圆(如图4),主圆的随机弦AB的长度大于其内接等边三角形的边长,当且仅当,AB的中点W处于小圆之内(参考图1和图2)。然而,我们没有理由倾向于设定W处于主圆内的某一点而不是其他点,根据无差别原则,P(CLSE)是在主圆内是均匀分布的。因此,

以上应用无差别原则对P(CLSE)的三种计算分别得出三个不同的结论,即P(CLSE)1/2P(CLSE)1/3P(CLSE)1/4,这是一个逻辑矛盾。

 

 

三、线性无差别条件

在这一节,我们要对导致无差别悖论的原因给予进一步的分析,进而引出线性无差别条件。

首先考虑书悖论,其可疑之处是,对那本书的封面是红的和是非红的赋予相等的概率,即P()P(非红)1/2。然而我们知道,非红的并不只是一种颜色,而是可以分为多种颜色如蓝、绿、黄等,而且我们的常识是图书馆的书的颜色不只有两种。因此,一般而言,P()P(非红)。在此情况下,对书为红色和书为非红色应用无差别原则是不恰当的。因此,我们应当对无差别原则的使用加以限制。凯恩斯正是这样做的,他说:

“令φ(a1)φ(a2)…φ(ar)是我们试图通过无差别原则赋予等概率的候选者,h是证据。那么,应用无差别原则的一个必要条件是:相对于该证据,φ(x)形式的候选者是不可分的(indivisible)”([2]p.60

据此,我们对那本书的颜色的两个候选者即“那本书是红的”和“那本书是非红的”不能使用无差别原则,因为后者能以同样的方式进行划分,即分为“那本书是蓝的”“那本书是绿的”,等等。既然在这里不能使用无差别原则,那么,由无差别原则导致的书悖论便不复存在了。

作为比较,我们举一个类似的但却能够使用无差别原则的例子。假定我们正在考虑一辆汽车的颜色,对这辆汽车我们只知道它生产于某厂和某年,通过查阅该厂的产品目录,我们又知道该厂于那一年生产的汽车只有红、黑、白三种不同的颜色。在这些信息的基础上,我们可以断言那辆汽车是这三种颜色之一,但却没有理由倾向于断言它具体是哪一种颜色。于是,根据无差别原则我们可以说:这辆汽车是红的概率为1/3。一般认为,这是对无差别原则的正确使用并且符合凯恩斯的不可分条件。但需指出,这种不可分性往往是人为的,而不是客观上本来如此的。如颜色在客观上并不只有红、黑、白这三种,而且其中任何一种颜色还有深浅之分,只是该汽车厂只取这三种颜色,而且每种颜色只取一种深度。有了这种不可分性的背景知识并且以此限制无差别原则的使用,就不会导致类似于书悖论的逻辑矛盾。

然而,凯恩斯修正后的无差别原则尽管可以解决书悖论,但却使无差别原则的应用范围受到过大的限制,以致使它不能被用于连续性场合,如某一参数θ在区间[a,b]是连续分布的,因为连续参数是无限可分的。事实上,凯恩斯对无差别原则所加的不可分条件不仅失效于连续性场合,而且对于离散性场合也不具有普遍性。因此,我们有必要探寻具有普遍性的关于无差别原则的限制条件。在笔者看来,这个限制条件就是:对象的无差别性是相对于试验机制而不是相对于自然本性的。正如在汽车颜色的例子中,我们之所以说红、黑、白是三种不可分的颜色并且在概率分布上是无差别的,那是相对于该汽车厂的生产机制而言的,而不是指颜色的自然本性是不可分的和无差别的。在凯恩斯对连续性场合的分析中,φ(1)φ(2)…φ(m)的不可分性和无差别性如果存在的话,那也只能是相对于某种试验机制而言的,这并不否认各个区间的长度在客观上是无限可分的。凯恩斯的不足在于没有看到或没有强调无差别原则对于试验机制的相对性,而孤立地强调不可分性,这样便是舍本求末了。当我们对无差别原则加上“相对于试验机制”这一限制条件,孤立的不可分条件可以去掉,从而使无差别原则同时适合于离散性场合和连续性场合。对于连续性场合,无差别原则成为:相对于某种试验机制,如果我们没有理由倾向于设定某一参数θ在区间[a,b]的某一点而不在该区间的其他点,那么,θ在该区间有着均匀的概率分布。[②]我们把这样表述的无差别原则称之为“试验机制无差别原则”。借助于这一原则,我们将对无差别悖论做更为深入的讨论。

吉利斯(Donald Gillies)从酒-水悖论和随机弦悖论概括出将无差别原则用于连续性场合而导致悖论的一般规律。连续性场合是:参数θ在某一区间[a,b]是连续的并且φf(θ)f是一个定义在[a,b]上的连续函数,并且,a≤θ≤b当且仅当f(a)≤φ≤f(b);这就是说,a≤θ≤b逻辑等值于f(a)≤φ≤f(b)。如果我们没有理由倾向于设定θ[a,b]内的某一点上而不在该区间的其他点上,那么,根据无差别原则,θ[a,b]上有一个一致的概率密度,亦即有一个均匀的概率分布。相应地,我们也没有理由倾向于设定φ[f(a),f(b)]内的某一点而不在该区间的其他点上,根据无差别原则,φ[f(a),f(b)]上也有一个一致的概率密度或均匀的概率分布。然而,一般而论,θ有一个一致的概率密度不等于φ有一个一致的概率密度。这就是由无差别原则导致悖论的原因所在。在酒-水悖论中,首先将无差别原则用于酒对水的比例,即把酒/水作为θ,据此又把无差别原则用于水/酒即φf(θ)1/θ,这便导致逻辑悖论。(参见[3],pp. 41-42.

吉利斯的这一分析是有一定启发性的,它向我们强调,在一般情况下不要把无差别原则同时用于一个参数θ和它的某种映射f(θ),否则,很容易导致逻辑悖论。不过,在笔者看来,我们有必要进一步明确其中的限制条件,即明确在什么条件下,无差别原则可以或不可以同时用于θf(θ)。下面我们就对这一问题做一探讨。

我们知道,θ在区间[a,b]具有均匀的概率分布,当且仅当,概率分布函数F(θ)在该区间的导数F¢(θ)是一常数cF¢(θ)又叫做θ在区间[a,b]的概率密度函数。现考虑另一参数φf(θ)和均匀的复合分布函数F(φ)F[f(θ)],相应于该分布函数的密度函数是

F¢[f(θ)]F¢(φ)f¢(θ)c·f¢(θ)

由此可见,复合函数F[f(θ)]表示一个均匀的概率分布,当且仅当,f¢(θ)是一常数。我们又知道,f¢(θ)是一常数(0除外),当且仅当,f(θ)是一个一次函数,即

φf(θ)kθb (k0

这样,我们便找到了可以把无差别原则同时用于θf(θ)的限制条件。由于一次函数也就是线性方程,其中两个变量φθ的关系叫做“线性关系”,我们不妨把这一条件称之为“线性无差别条件”。

线性无差别条件:如果参数θ在一区间的概率分布是无差别的,并且φf(θ)是一次函数,那么,φ在相应区间的概率分布也是无差别的;否则,φ在相应区间的概率分布是有差别的。

线性无差别条件从直观上更容易理解:当横坐标上的动点θ在区间[a,b]上匀速移动时,它投射到任何一条斜线上的点在相应的区间内也是匀速移动的;与之不同,θ投射在曲线上的动点则不是匀速移动的。现在我们可以说,导致无差别悖论的根源是将无差别原则同时用于并不满足线性无差别条件的θf(θ)

顺便提及,吉利斯的上述分析中有一个疏忽。一方面,他提到的一个条件是 a≤θ≤b当且仅当f(a)≤φ≤f(b)”,另一方面他又把酒-水悖论当作一个相关的例子。然而,在酒-水悖论中,f(θ)1/θ,并不满足他所提到的这个条件。这个条件实际上是要求函数f(θ)是单调增加的,可以说,它作为把概率均匀分布从θ推广到f(θ)的条件,既不是充分的也不是必要的,而是无关的。

四、对无差别悖论的解决

既然导致无差别悖论的根源是将无差别原则同时用于并不满足线性无差别条件的θf(θ),那么消除这类悖论的途径就是在θf(θ)之间做出评价和选择,然后将无差别原则只用于其中一个而放弃另一个。做出这种评价和选择的标准是什么?在笔者看来,这种评价和选择的标准是相对于试验机制而言的。

试验机制无差别原则与古典无差别原则及其各种修正形式的区别在于:古典无差别原则并不要求考虑试验机制的无差别性,而只要求对所讨论的各个可能事件在认识上是无差别的。根据古典无差别原则,当人们对所讨论的各个事件完全无知时,也应对它们赋予相等的概率,因为人们对它们在认识上是无差别的。与古典无差别原则不同,试验机制无差别原则并不是简单地要求认识上的无差别,而是要求认识到试验机制是无差别的。如果人们对两个事件完全无知,那么,他们就不会认识到产生这两个事件的试验机制的无差别性,因此,根据试验机制无差别原则,不能由相等的无知得出相等的概率。

将试验机制无差别原则同线性无差别条件结合起来,我们可以避免所有的逻辑悖论。首先以不对称硬币悖论为例。导致这一悖论的原因是:从物理的层面看,那枚硬币的不对称结构使我们认为正面朝上和反面朝上的概率是不相等的;但从知识层面看,我们对这枚硬币的重心偏于正面或偏于反面处于完全无知的状态,这种相等的无知使我们赋予正面朝上和反面朝上以相等的概率。现根据试验机制无差别原则,我们只承认前一结论而不承认后一结论,因为只有前一结论是根据对试验机制的认识做出的。这样,逻辑悖论便不存在了。

其次以书悖论为例。导致书悖论的原因是,先将无差别原则用于“那本书是红的”和“那本书是非红的”这两个命题,从而赋予二者的概率均为1/2。然后又将无差别原则用于更多的命题,从而使“那本书是红的”概率小于1/2。现从试验机制无差别原则的观点看,在我们没有了解那家图书馆的购书和藏书机制之前,我们得不出任何结论,因而逻辑悖论不会产生。如果我们了解有关情况如那家图书馆在购书和藏书时并不限制颜色,那么我们可以肯定,把无差别原则仅仅用于红的和非红的是一种错误的做法,因为非红的不只包含一种颜色,所以不应把1/2的概率赋予那两个命题,这样悖论也不会产生。

再来考虑酒-水悖论。前面指出,导致无差别悖论的根源是将无差别原则同时用于并不满足线性无差别条件的θf(θ),这里的θ是酒/水比例,f(θ)是水/酒比例, f(θ)1/θ首先,根据线性无差别条件,这种做法是错误的,因为f(θ)1/θ不是一次函数,相应地,f(θ)的导数f¢(θ)不是一个常数,而是f¢(θ)(1/θ)¢-1/θ2。其次,根据试验机制无差别原则,即使只将无差别原则用于其中一个,也只有在具体考察试验机制的基础上才能够确定。在没有给出试验机制的情况下,我们无从选择,当然也就得不出任何悖论

为了对酒-水悖论以及线性无差别条件做更为深入的考察,让我们以如下试验机制为例。假定装有酒水混合液的瓶子容量是一公升,我们通过测量酒的体积来测量酒/水比例。酒/水比例在区间[1/3,3]的分布是通过测量酒的体积在区间[1/4公升,3/4公升]的分布而得到的,这种测量结果相当于水的体积在区间[3/4公升,1/4公升]。酒/水比例在区间[1/3,2]的分布是通过测量酒的体积在区间[1/4公升,2/3公升]的分布而得知的,这种测量结果相当于水的体积在区间[3/4公升,1/3公升]。在此,酒的体积为θ,水的体积为φ1-θ。进一步假定,这种试验机制可以在区间[1/4公升,3/4公升]随机地选择酒的体积,以使酒的体积在该区间的任何一点同在该区间的其他点是无差别的,那么,根据试验机制无差别原则,θ在该区间有一个均匀的概率分布。据此,θ在区间[1/4公升,2/3公升]的概率是:

P(1/4θ≤2/3)

相对于该试验机制,θ在区间[1/4公升,2/3公升]相当于酒/水比例在[1/3,2],因此,

  P(1/3/2)5/6

我们注意到,φ1-θ,这是一次函数,相应地,φ¢(1-θ)¢-1,满足线性无差别条件,所以,我们可以将无差别原则从θ推广到φ,即φ在区间[3/4公升,1/4公升]有一个均匀的概率分布。据此,φ在区间[3/4公升,1/3公升]的概率是:

P(1/3≤φ≤3/4)

相应地,

P(1/2/3)5/6

我们看到,在满足线性无差别原则的情况下,我们把无差别原则同时用于θf(θ),所得结论是相同的,并未导致逻辑悖论。也许有人提出,尽管这两个计算结果是相同的,但它们同导致酒-水悖论的两个计算结果——P(1/3/2)5/8P(1/2/3)15/16——却是不同的,逻辑矛盾仍然存在。对此,我们的回答是:既然导致悖论的那两个计算结果完全没有考虑试验机制,这是对无差别原则的误用,相应的计算结果是无效的。这样,逻辑矛盾也就不存在了。

最后讨论随机弦悖论。我们接着杰恩斯的工作来讲。(参阅[4])杰恩斯认为,对于几何概率问题的解决方案应当满足某些不变性原则,如旋转不变性、尺度不变性和平移不变性。按照这一标准,在关于随机弦问题的三个解决方案中只有第一个即P(CLSE)1/2是恰当的,因为只有它满足这些不变性原则而后两个方案却没有。根据第一方案,杰恩斯计算出那个随机弦的全部概率分布,并做实验加以检验。这个实验是在地板上画一个直径为5英寸的圆,然后从其上的一个固定点随机地抛掷细枝,129次成功抛掷的结果与它他的计算结果在允许误差内是符合的。

不过,正如吉利斯指出的,杰恩斯提出的这些不变性要求不具有普遍性,至少对酒-水悖论就不适用,值得重视的是杰恩斯的实验工作。([3]pp.47-48)既然杰恩斯通过实验表明第一方案的结论即P(CLSE)1/2是正确的,那么我们可以说,相对于杰恩斯的试验机制,随机弦的中点W在圆半径R上的分布是无差别的,根据试验机制无差别原则,WR上有一个均匀的概率分布。W到圆心O的长度记为αW在半径R上有一个均匀分布等于α在区间[O,R]有一个均匀分布。第三方案考虑的是W在以R为半径的圆内面积上的分布。令φ表示W在其之内的圆面积,其定义域是[0,πR2]φα的函数即φπα2。由于φ不是α的一次函数,并且已知α在区间[O,R]有一个均匀分布,根据线性无差别条件,φ在相应区间[0,πR2]不是均匀分布的。因此,第三方案是对无差别原则的误用,其结果即P(CLSE)1/4是不可取的。第二方案考虑的是随机弦AB与圆周上A点切线的夹角θ在区间[0o,180o]的分布(见图3)。圆半径为R,随机弦AB的长度记为ρ。作一条辅助线,即在圆周上作一条经过A点的直径,自然地,此直径与那条切线垂直。可以看出,ρθ的函数关系为:ρ2R·cos(π/2-θ)AB的中点W到圆心O的长度仍为ααθ的函数关系为:αR·sin(π/2-θ)。这个函数的反函数为:θπ/2-Arcsinα/R。由于α的变化区间是[0,R]α/R的变化区间就是[0,1],相应地,θ的变化区间是[0o,180o]。又由于θ不是α的一次函数,根据线性无差别原则,θ在区间[0o,180o]不是均匀分布的,因此,第二方案及其结果即P(CLSE)1/3也是不可取的。

在以上关于随机弦的分析中,我们借助于试验机制无差别原则和线性无差别条件,从三个相互矛盾的方案中只保留了第一方案,原有的逻辑矛盾也就随之消除了。需要指出,我们之所以接受第一方案是相对于杰恩斯的试验机制而言的,也就是说,相对于杰恩斯的试验机制,只有α在其区间是均匀分布的。如果相对于另一种不同的试验机制,如那个在圆上随机抛掷细枝的装置同时作某种旋转或圆周运动,或许最为可取的方案就不是第一方案而是其他方案。但是,无论保留哪一个方案,其他方案必须放弃,除非其他方案满足线性无差别条件,而所有满足线性无差别条件的方案的计算结果都是相同的。这样,我们就从根本上避免了无差别悖论。

最后需要考虑的问题是,与古典无差别原则相比,试验机制无差别原则的应用范围受到很大的限制,以此来换取对无差别悖论的消除或避免,其代价似乎太大了。对此,笔者的回答是,无差别悖论属于认识论范围,它们是古典无差别原则所引起的认识上的困境。试验机制无差别原则使我们在认识上摆脱这一困境并不意味着我们在实用上完全拒绝古典无差别原则;正如我们认识到一个坏人以后仍然可以出于策略的考虑同他继续合作。从贝叶斯方法的观点看,对于验前概率的确定可以是因人而异的,这种差异可以随着验后概率的确定而得到缩小甚至消除;这也就是说,对验前概率的确定仅仅是权宜之计。因此,在没有其他更好方法的时候,我们不妨通过古典无差别原则对于各个竞争假设赋予相等的验前概率;如果面临无差别悖论,可以主观性地或私人性地选择其中一个赋值而放弃另一个赋值,然后根据贝叶斯公式和新的证据来确定验后概率。验后概率是对验前概率的修正,随着新证据的增加,这种修正过程可以淡化甚至消除验前概率的主观性和私人性。这样,一方面,我们通过试验机制无差别原则在认识上消除了无差别悖论,另一方面,我们可以在策略上保留对古典无差别原则的广泛应用。对于贝叶斯方法论来说,这是不成问题的。

 

参考文献】

[1] Laplace, P. S. (1814)A Philosophical Essay on Probabilities, English Translation of the 6th French Edition, Dover, 1951.

[2] Keynes, J. M. (1921) A Treatise on Probability, Macmillan, 1963.

[3] Gillise, D. Philosophical Theories of Probability, London: Routledge, 2000.

[4] Jaynes, E. T. The Well-Posed Problem, Foundations of Physics 4(3), 1973, pp. 477-92.

[5]陈晓平:《归纳逻辑与归纳悖论》,武汉大学出版社,1994年。

 

(原载《自然辩证法通讯》2009年第1。录入编辑:哲学中国网)

 


试验机制无差别原则及其条件

——关于无差别悖论的一种解决

陈 晓 平

(华南师范大学 公共管理学院,广东 广州 510006)

 

 

摘要:无差别原则及其悖论由来已久。当代归纳逻辑的创始人凯恩斯曾为消除这些悖论付出巨大的努力。本文介绍了若干典型的无差别悖论和对它们的一些尝试性解决,并提出一种新的解决方案。此方案的核心是对古典无差别原则加以试验机制的条件限制和提出从参数θf(θ)的线性无差别条件

关键词:无差别原则 悖论 概率 试验机制线性无差别条件

The Principle of Indifference on Trial Setup and Its Condition:

A Solution of the Paradoxes of Indifference

Chen Xiaoping

 

Abstract:

The principle of indifference and the paradoxes of it are of long standing. Keynes, one of the founders of contemporary inductive logic, devoted himself to eliminating these troubles. This paper introduces several typical paradoxes of indifference and some tentative solutions of them. Then I advance a new solution, the core of which is the principle of indifference on the trial setup and the condition of linear indifference from θ to f(θ).

 

Keywords: the principle of indifference, paradoxes, probability,

trial setup, the condition of linear indifference

 



[]本文对这些悖论的介绍参照了[3], pp. 37-42.

[] 笔者曾经建议用“试验机制无差别原则”取代“古典无差别原则”。参阅[5]第七章。